2024/II-III. lapszám

Szuperszívós műszaki anyag fejlesztése reciklált poli(etilén-tereftalát)-ból

Development of a super tough engineering material from recycled poly(ethylene terephthalate)

Slezák Emese^a, Tóth László^b, Ronkay Ferenc^c, Molnár Béla^d, Bocz Katalin^e

^aSzerves Kémia és Technológia Tanszék, Vegyészmérnöki és Biomérnöki kar, Budapesti Műszaki és Gazdaságtudományi Egyetem, doktorandusz, slezak.emese@edu.bme.hu ^bInnovatív Járművek és Anyagok Tanszék, Műszaki és Számítástechnikai Kar, Neumann János Egyetem, adjunktus, toth.laszlo@nje.hu

IMSYS Kft. Anyagvizsgáló Laboratórium, mérőcsoport vezető, alabor@imsys.hu dIMSYS Kft. Anyagvizsgáló Laboratórium, laboratóriumvezető, alabor@imsys.hu

*Szerves Kémia és Technológia Tanszék, Vegyészmérnöki és Biomérnöki kar, Budapesti Műszaki és Gazdaságtudományi Egyetem, tudományos munkatárs, bocz.katalin@vbk.bme.hu

Kulcsszavak Poli(etilén-tereftalát), mechanikai újrahasznosítás, ütőszilárdság-javítás, 3D-nyomtatás	Absztrakt A műanyagiparban elterjedt gyártástechnológiák (fröccsöntés, extrúzió, 3D-nyomtatás) segítségével dolgoztunk fel rossz minőségű PET- palack hulladékot. Vizsgáltuk az újrafeldolgozás során bekövetkező degradáció mértékét és hatását a mechanikai tulajdonságokra. Míg a szilárdság és a tárolási modulus értékek még kismértékben javultak is az újrahasznosítás során, addig a szakadási nyúlás és az ütőszilárdság csökkent. Utóbbi problémát elasztomer (EBA-GMA) hozzáadásával kompenzáltuk, amely lehetővé tette kiegyensúlyozott mechanikai tulajdonságú fröccsöntött és 3D-nyomtatott termékek előállítását.
Keywords poly (ethylene terephthalate), mechanical recycling, enhancement of impact strength, 3D printing	Abstract We have processed low-quality PET bottle waste by manufacturing technologies frequently applied in the plastics industry (injection moulding, extrusion, 3D printing). We investigated the degree of degradation during recycling and its impact on mechanical properties. While strength and storage modulus values improved slightly during recycling, elongation at break and impact strength decreased. The latter problem was compensated for by adding elastomer (EBA-GMA), which allowed the production of injection moulded and 3D printed products with balanced mechanical properties.

1. Bevezetés

Az egyre növekvő hulladék mennyisége miatt a polimerek újrahasznosítása egyre fontosabb téma, különösen a műanyag csomagolásoknál [1]. A poli(etilén-tereftalát) (PET) esetén számos módszer áll rendelkezésre, az energetikai hasznosítástól [2] a kémiai [3] és a mechanikai újrahasznosításig [4]. Utóbbi során a fő probléma az ütésállóság romlása, amelyet a magas hőmérséklet, a nyíróerők, valamint a polimer és a víz/szennyeződések között lejátszódó kémiai reakciók okoznak [5].

Bocz és társai [6] a mátrix polimer molekulatömegének hatását vizsgálták PET/etilén-butil akrilát-glicidil metakrilát terpolimer (EBA-GMA) rendszerekben. Megállapították, hogy a reciklált PET-ben (RPET) nagyobb számban vannak jelen funkciós csoportok, amelyek reakcióba lépnek az EBA-GMA epoxi csoportjaival. Emellett az újrahasznosított anyagban a többszöri feldolgozás okozta degradáció lánctördelődést okoz, és az így kapott rövidebb láncok mozgékonyabbak. Ennek eredményeképp az RPET-hez feleannyi elasztomer szükséges az ütőmunka ugrásszerű javításához, mint az eredeti PET-hez.

Újabb kutatások alapján a PET morfológiáját egy háromfázisú modell segítségével lehet leírni [7]. Az amorf fázis két részre osztható fel, amelyek eltérő tulajdonságokkal bírnak. A rideg amorf frakció (RAF) közvetlenül kapcsolódik a kristályos fázishoz (KRF), és molekulái kevésbé mozgékonyak, mint a mobil amorf fázisban (MAF). A KRF arányán kívül a RAF és a MAF mennyisége is befolyásolják a termékek mechanikai tulajdonságait.

Mancini és társai [8] a PET egymást követő újrafeldolgozását vizsgálták. A kristályosság az újrahasznosítási lépések számával nőtt, és a lánctördelődést a funkcionális csoportok megnövekedett száma igazolta.

Az elmúlt években sokan kísérleteztek újrahasznosított PET szálak és 3D-nyomtatott termékek előállításával [9-11]. Sokszor azonban a filamentgyártás során sem adtak a PET-hez adalékanyagokat, ami a 3D-nyomtatott termékek sokkal kisebb szilárdságát eredményezte [10, 11]. Továbbá az ütésállóságot számos tanulmányban egyáltalán nem vizsgálták [12-14]. Kutatásunkban tovább vizsgáltuk a PET/EBA-GMA rendszerek alkalmazhatóságát, tanulmányozva az újbóli feldolgozásának hatását a fröccsöntött blendek termikus, mechanikai és fáziszszerkezeti jellemzőire. Emellett 3D-nyomtatásra alkalmas alapanyag fejlesztését tűztük ki célul.

2. Kísérleti anyagok és berendezések

2.1 Anyagok

A fröccsöntött próbatestek elkészítéséhez PET palack darálékot használtunk, amelyet a JP Pack Kft. forgalmaz. A darálék oldatviszkozitása (IV) 0,56±0,03 dl/g, míg tömeg szerinti molekulatömege (M_w) 16,900 g/mol volt [6]. A 3D-nyomtatott minták tojástartó darálékból származó RPET-ből készültek, amelynek viszkozitása 0,64±0,02 dl/g volt. Szívósságjavító adalékként a Dow által forgalmazott Elvaloy PTW-t használtunk, amely 66,75m/m% etilént, 28,00 m/m% butil-akrilátot és 5,25m/m% glicidil-metakrilátot tartalmaz.

2.2 Minták készítése

2.2.1 Fröccsöntött próbatestek készítése és újrafeldolgozása

Feldolgozás előtt a PET-et 3 órán át egy UF1060 (Memmert) szárítóban szárítottuk 160 °C-on, majd további 1 órán át 90 °C-on, hogy az EBA-GMA ne olvadjon meg a garatban. Az elasztomert 0, 5, 10, 15 és 20 m/m%-os arányban adtuk a polimerhez. A reaktív extrudálást egy Labtech LTE 26-48 ikercsigás extruderen végeztük. A csiga fordulatszáma 80 1/perc, a henger zónahőmérsék-lete 255-265 °C, a szerszámnyomás 37-52 bar volt. Az extrudált granulátumot ismét 4 órán át 160 °C-on szárítottuk, majd ISO piskóta próbatesteket fröccsöntöttünk belőle egy

Engel ES 200/45 HL–V hidraulikus gépen. A henger hőmérséklete 270-285 °C, a csiga fordulatszáma 480 1/perc, az utónyomás 70-75 bar, a szerszám hőmérséklete 45-55 °C és a hűtési idő 20-27 s volt. A blendek újrahasznosíthatóságának tesztelésére ugyanezt a folyamatot még egyszer elvégeztük. A fröccsöntött próbatestekről készült fotók az 1. ábrán láthatóak.

1. ábra: Fröccsöntött próbatestek: egyszer feldolgozott (balra) és kétszer feldolgozott (jobbra) minták fentről lefelé növekvő elasztomer tartalommal

2.2.2 Kompaundálás, filamentgyártás és 3D-nyomtatás

A filamentgyártás előtt egy LTE 26-48 ikercsigás extruderen kompaundáltuk a blendeket (0-5-10-15-20% EBA-GMA). A PET darálékot 4 órán át 160°C-on, míg az elasztomert 70°C-on szárítottuk a kompaundálást megelőzően. A zónahőmérséklet 245-260°C, míg a csiga sebessége 20 1/perc volt. A filamentgyártáshoz egy Collin Teach-Line E20T egycsigás extrudert alkalmaztunk. A zónák hőmérséklete 240-250°C, a csiga sebessége 35 1/perc, míg a filament elhúzási sebessége 47 1/perc volt. Az elhúzás során a filamentet vízfürdővel hűtöttük, majd feltekercseltük egy dobra és a nyomtatást megelőzően 60°C-on szárítottuk 24 órán át.

A próbatestek nyomtatásához egy Craftbot Plus 3D-nyomtatót használtunk. A GCODE-ot egy Craftware 1.23-as verziójú szeletelő szoftver készítette. A nyomtatás 250 °C-os fejjel, 80 °C-os munkaasztalon, 0,4 mm-es fúvó-kával történt. 0,2 mm rétegvastagságot, 100 %-os kitöltést, 40 mm/s nyomtatási sebességet és 100 %-os ventilátorsebességet adtunk meg. A cél nem az egy irányban mérhető mechanikai tulajdonságok maximalizálása volt, ezért 0/90°-os nyomtatási rétegrendet választottunk (2. ábra), amellyel csökkenthető az anizotrópia [15].

2. ábra: A 3D-nyomtatott próbatestek rétegrendje

2.3 Vizsgálati módszerek

Az elasztomert nem tartalmazó minták IV-jét egy RPV-1 (PSL Rheotek) Ubbelodhe-féle viszkoziméterrel határoztuk meg. A vizsgálathoz 60:40 m/m% fenol – 1,1,2,2,-teraklóretán elegyében oldottuk a mintákat 100 °C-on, és az oldatok koncentrációja 0,5g/dl volt. A 2-2 párhuzamos mintát 30 °C-on teszteltük.

A minták ütőszilárdságának meghatározásához Izod ütővizsgálatot végeztük. A fröccsöntött próbatesteket egy Zwick 5115 10/01 ütőművön 5,5 J-os kalapáccsal, míg a 3D-nyomtatott mintákat egy Ceast Impactor II műszeren vizsgáltuk 5 J-os kalapáccsal. Az eltérő gyártástechnológia és feldolgozási paraméterek miatt a minták ütési eredményeinek direkt összehasonlítása nem lehetséges, így nem törekedtünk azonos mérési körülményekre. A próbatesteken 2 mm mély V alakú bemetszést ejtettünk rotációs mikrotommal.

Az ütővizsgálat során keletkezett töretfelületeket aranynyal vontuk be és egy Zeiss EVO MA15 pásztázó elektronmikroszkóppal (SEM) tanulmányoztuk. A munkatávolság 9-12 mm, a gyorsító feszültség pedig 15 kV volt.

A dinamikus mechanikai analízist (DMA) egy MetraVIB DMA25 berendezésen hajtottuk végre, húzó elrendezésben. A fröccsöntött próbatestek 8x2mm², míg a 3D-nyomtatott minták 4,5x3,7mm² keresztmetszetűek voltak, a befogási távolság 18,87mm volt. A mérés során 10 Hz frekvenciát és 3 °C/perc fűtési sebességet alkalmaztunk és 10 °C-ról 140 °C-ra melegítettük a mintákat.

A karakterisztikus hőmérsékletek és a fázisok (KRF, RAF, MAF) arányának meghatározáshoz differenciál pásztázó kalorimetriát (DSC) alkalmaztunk. A mérések nitrogénben, 20 °C/perc fűtési sebesség mellett történtek. A mintákat 20 °C-ról 320 °C-ra fűtöttük. A kristályos részarány számítása az (1) egyenlet alapján történt:

$$\chi_{k}\left[\%\right] = \frac{\Delta H_{m} - \Delta H_{cc}}{\Delta H_{m}^{0} \left(1 - \phi_{EBA-GMA}\right)} \cdot 100\% , \qquad (1)$$

ahol χ_k a minta kristályos részaránya [%], ΔH_m a kristályolvadáshoz tartozó entalpia [J/g], ΔH_{cc} a hidegkristályosodáshoz köthető entalpia [J/g], ΔH_m^0 a 100%-ban kristályos PET olvadáshője (140 J/g) és $\phi_{EBA-GMA}$ az elasztomer tömegtörtje [-] [16].

A mobil amorf fázis aránya a (2) egyenlettel számítható ki:

$$\chi_m[\%] = \frac{\Delta c_{\rho}}{\Delta c_{\rho}^{0} \left(1 - \phi_{EBA-GMA}\right)} \cdot 100\%, \qquad (2)$$

ahol χ_m a mobil amorf fázis aránya [%], Δc_{ρ} az üvegesedési átmenetnél mérhető fajhőváltozás a mintában [J/(g·K)] és Δc_{ρ}^{0} a 100%-ban amorf minta fajhőváltozása az üvegesedésnél (0,405 J/(g·K)) [16].

A rideg amorf fázis nagysága pedig a (3) egyenlet alapján számolható ki:

$$\chi_r \left[\%\right] = 100\% - \chi_k - \chi_m \,, \tag{3}$$

ahol χ_r a RAF aránya [%].

3. Eredmények és kiértékelésük

3.1 PET/EBA-GMA blendek mechanikai újrahasznosítása

3.1.1 A PET degradációja feldolgozás során

A degradáció vizsgálatához az adalékolatlan RPET IV-jét mértük minden egyes feldolgozási lépés után. Ahogy a polimer egyre többször volt kitéve magas hőmérsékletnek és nyírófeszültségnek, a polimer láncok tördelődtek, amit az IV csökkenése jelez (3. ábra). A második újrafeldolgozási ciklus után az IV 0,50 dl/g alá csökkent, ami jelentős degradációra utal.

3. ábra: Az adalékolatlan RPET IV-je az egyes feldolgozási lépések után

3.1.2 Mechanikai tulajdonságok változása az újrafeldolgozás során

A 4. ábra az 1. és 2. újrafeldolgozási ciklus utáni ütőszilárdság értékeket mutatja be. Az 1x újrafeldolgozott minták jó egyezést mutatnak korábbi vizsgálatainkkal [17]. A 2. ciklus után azonban az eredmények elmaradnak, bár az ütőmunka növekedése megfigyelhető az elasztomertartalom emelkedésével. Az újrahasznosítás hatását az ütőszilárdságra két jelenség okozhatja. Az első a PETmátrix degradációja, míg a második hatás az elasztomer diszperziójának lehetséges megváltozása az újrafeldolgozás során [18]. A PET-mátrix degradációja kétségtelenül

4. ábra: Izod ütőszilárdság 1x és 2x újrafeldolgozást követőenfeldolgozási lépések után

probléma a 3. ábra alapján, hiszen a 2. feldolgozási ciklus után a PET IV-je 0,58 dl/g-ról 0,48 dl/g-ra csökkent.

A töretfelületeket SEM-mel vizsgáltuk és a mikrográfok az 5. ábrán láthatók. A képek megerősítették, hogy a reaktív szívósítás csak az első feldolgozási ciklus után volt hatékony 15 és 20% EBA-GMA tartalom mellett, ahol a töretfelület duktilis, míg az összes többi minta rideg törést szenvedett.

5. ábra: SEM képek a minták töretfelületéről:
(a) 0% EBA-GMA 1x feldolgozott; (b) 0% EBA-GMA 2x;
(c) 5% EBA-GMA, 1x; (d) 5% EBA-GMA, 2x;
(e) 10% EBA-GMA, 1x; (f) 10% EBA-GMA, 2x;
(g) 15% EBA-GMA, 1x; (h) 15% EBA-GMA, 2x;
(i) 20% EBA-GMA, 1x; (j) 20% EBA-GMA, 2x

Az ütésállóságon kívül a dinamikus mechanikai tulajdonságokat is megvizsgáltuk. Az egyes minták DMA-görbéjét a 6. ábra mutatja be. A tárolási modulusok kevesebb EBA-GMA tartalommal és a feldolgozási ciklusok számával növekedtek. Utóbbit az újrafeldolgozott minták magasabb kristályossága okozhatja. Az is látható, hogy az üvegesedési átmenet környékén az 1. ciklus esetében a modulusok meredeken csökkentek, míg a 2. ciklusból származó minták jobb hőállóságot mutattak.

3.1.3 Kristályos jellemzők

A minták morfológiáját DSC-vel elemeztük, hogy lássuk a degradáció hatását. A 3 frakció arányát a DSC görbékből határoztuk meg ((1)-(3) egyenletek). A kristályosság az első ciklus után 10-13%, míg a második után 15-20% volt (7. ábra), ami megmagyarázza a tárolási modulus értékek közti különbségeket (6. ábra). A kristályosságban tapasztalt eltérést a viszkozitás csökkenése (3. ábra) és a lánchosszúság változása okozza, amelyek elősegítik a polimer láncok átrendeződését [19]. Az 1. gyártási ciklus után a kristályosság az EBA-GMA tartalommal enyhén csökkent, de az újrafeldolgozás után ennek éppen az ellenkezője látható. A csökkenő kristályosság a PET és az EBA-GMA közötti erős kölcsönhatást jelzi, ami csökkenti a polimer láncok mobilitását [20]. Az újrafeldolgozással kiváltott lánctördelődés fokozta a láncok mobilitását, és nem alakultak ki új kapcsolódási pontok a PET és az EBA-GMA között, így a kristályosodást már nem akadályozta az elasztomer jelenléte.

A 8. ábra a rideg (a) és mobil (b) amorf fázis arányát mutatja be. Már korábbi tanulmányunkban [17] kimutattuk, hogy minél magasabb az elasztomer tartalom, annál magasabb a RAF aránya, és ezt a 8.a ábra is megerősíti. Az újrafeldolgozás növelte a RAF-ot is, ami összefügg a minták magasabb kristályosságával. A 8.b ábra a MAF részarányát mutatja növekvő EBA-GMA tartalom esetén, és lineáris korreláció figyelhető meg. A 2. feldolgozási ciklus a MAF nagymértékű csökkenését eredményezte, ami magyarázza a gyengébb ütési tulajdonságokat.

8. ábra: (a) RAF és (b) MAF arányának változása az újrafeldolgozás során

3.2 3D-nyomtatott próbatestek gyártása RPET/ EBA-GMA blendekből

3.2.1 Degradáció és a minták kristályossága

A 3D-nyomtatott RPET minták egyes gyártási lépéseit követően oldatviszkozitás méréseket végeztünk. Azt találtuk, hogy az adalékolatlan RPET IV-je 0,64 dl/g-ról 0,57 dl/g-ra csökkent a regranulálás során, majd tovább csökkent 0,51 dl/g-ra a filamentgyártást követően. A 3D-nyomtatás alatt az újrahasznosított anyag IV értékének csökkenése 0,04 dl/g volt. Ebből arra következtethetünk, hogy a filament előállítása nagyobb degradációt okoz, mint a nyomtatás.

A növekvő EBA-GMA tartalom a kezdeti kristályos arány kismértékű csökkenését eredményezte (9.a ábra). A MAF kvázi lineárisan csökkent (9.b ábra), míg a RAF lineáris növekedést mutatott az EBA-GMA tartalom függvényében (9.c ábra). A MAF aránya 10-20%-kal alacsonyabb, míg a RAF rendre magasabb volt minden összetételnél a 3D-nyomtatott mintáknál, mint a megfelelő filamenteknél.

2024/II-III. lapszám

9. ábra: A DSC vizsgálatok eredményei: (a) kristályos hányad; (b) MAF aránya és (c) RAF aránya az EBA-GMA tartalom függvényében

A 3D-nyomtatott minták magasabb RAF-értéke azt jelzi, hogy a PET-mátrixban nagyobb orientáció alakult ki. Mivel az előállított filament átmérője 1,6 mm, a nyomtatás során lerakódott raszterek pedig csak 0,2 mm-t tesznek ki, és a lerakódás közbeni áramlási sebesség is lényegesen nagyobb, a nagyobb nyírás következtében nagyobb molekuláris elrendezés, orientáció adódhat.

3.2.2 A filamentek és 3D-nyomtatott próbatestek mechanikai tulajdonságai

A 3D-nyomtatott minták tárolási modulusának hőmérsékletfüggését a 10.a ábrán látható DMA görbék mutatják be. Megfigyelhető, hogy a minták merevsége 10-60 °C között nem változik jelentősen, de a PET-re jellemző üvegesedési hőmérséklet (Tg) elérésekor a 60-90 °C tartományban meglágyulnak. A Tg hőmérséklet emelkedő tendenciát mutat az EBA-GMA tartalommal (10.b ábra), ami alátámasztja, hogy a PET és az EBA-GMA között kémiai kötések jönnek létre, amelyek gátolják a PET molekulák mobilitását. Ez is hozzájárul a MAF fázis arányának csökkenéséhez (lásd 9.b ábra). A 11. ábrán megfigyelhető, hogy a 3D-nyomtatott termékek hornyolatlan ütőszilárdsága 5% EBA-GMA tartalomnál megduplázódik, 20% EBA-GMA aránynál pedig megháromszorozódik. A hornyolt ütővizsgálat esetén még

11. ábra: A hornyolatlan és hornyolt ütőmunka változása az EBA-GMA tartalommal

nagyobbak a változások: 15% EBA-GMA tartalomnál hirtelen növekedés figyelhető meg: az ütőszilárdság a 9-szeresére nő. Ez azt mutatja, hogy az EBA-GMA hatékonyan gátolja a repedésterjedést, és segíti a mátrix folyását, mint a fő energiaelnyelő folyamatot.

4. Összefoglalás

- Többféle technológia (extrúzió, fröccsöntés, 3D-nyomtatás) segítségével dolgoztunk fel újrahasznosított PET-et. Az újrafeldolgozás okozta degradációt, és az ebből következő ridegedést EBA-GMA hozzáadásával kompenzáltuk. Több kulcsfontosságú paramétert – elasztomertartalom és többszörös újrafeldolgozás hatása – vizsgáltunk.
- 0-20% elasztomer tartalmú RPET/EBA-GMA keverékek ipari újrahasznosítási folyamatát szimuláltuk két feldolgozási ciklus végrehajtásával. A keverékek ütőszilárdsága számottevően csökkent a 2. ciklusban, különösen a magasabb elasztomerarányok (15% és 20%) esetén, míg az 1. ciklusban a szívósságnövelő hatás kiváló volt. A minták tárolási modulusa az újrafeldolgozás során csak kismértékben változott.
- Megállapítottuk, hogy az RPET/EBA-GMA keverékek a 3D-nyomtatás során is hasznosíthatóak, és kiegyensúlyozott mechanikai tulajdonságokkal rendelkező termékek állíthatók elő.

Köszönetnyilvánítás

A KDP-IKT-2023-900-I1-00000957/0000003 számú projekt a Kulturális és Innovációs Minisztérium Nemzeti Kutatási Fejlesztési és Innovációs Alapból nyújtott támogatásával, a KDP-2023 pályázati program finanszírozásában valósult meg.

Irodalomjegyzék

- Z. Boz, V. Korhonen, C.K. Sand, Consumer considerations for the implementation of sustainable packaging: A review, Sustain. 12 (2020). https://doi.org/10.3390/su12062192.
- [2] L. Bartolome, M. Imran, B. Gyoo, W. A., D. Hyun, Recent Developments in the Chemical Recycling of PET, in: Mater. Recycl.
 Trends Perspect., 2012. https://doi.org/10.5772/33800.
- [3] F. Awaja, D. Pavel, Recycling of PET, Eur. Polym. J. 41 (2005) 1453–1477. https://doi.org/10.1016/j.eurpolymj.2005.02.005.
- [4] E. Langer, K. Bortel, S. Waskiewicz, M. Lenartowicz-Klik, Methods of PET Recycling, in: Plast. Deriv. from Post-Consumer PET, 2020: pp. 127–171. https://doi.org/10.1016/b978-0-323-46200-6.00005-2.
- [5] G.P.K. Dimitris N. Bikiaris, Effect of carboxylic end groups on thermooxidative stability of PET and PBT, Polym. Degrad. Stab. 63 (1999) 213–218.
- [6] K. Bocz, F. Ronkay, K.E. Decsov, B. Molnár, G. Marosi, Application of low-grade recyclate to enhance reactive toughening of poly(ethylene terephthalate), Polym. Degrad. Stab. 185 (2021).

https://doi.org/10.1016/j.polymdegradstab.2021.109505.

- [7] R. Rastogi, W.P. Vellinca, S. Rastogi, C. Schick, H.E.H. Meijer, The three-phase structure and mechanical properties of poly(ethylene terephthalate), J. Polym. Sci. Part B Polym. Phys. 42 (2004). https://doi.org/10.1002/polb.20096.
- [8] S.D. Mancini, M. Zanin, Recyclability of PET from virgin resin, Mater. Res. 2 (1999) 33–38. https://doi.org/10.1590/s1516-14391999000100006.
- [9] H. Schneevogt, K. Stelzner, B. Yilmaz, B.E. Abali, A. Klunker, C. Völlmecke, Sustainability in additive manufacturing: Exploring the mechanical potential of recycled PET filaments, Compos. Adv. Mater. 30 (2021). https://doi.org/10.1177/26349833211000063.
- [10] M. Nikam, P. Pawar, A. Patil, A. Patil, K. Mokal, S. Jadhav, Sustainable fabrication of 3D printing filament from recycled PET plastic, Mater. Today Proc. (2023). https://doi.org/10.1016/j. matpr.2023.08.205.
- [11] I. Tylman, K. Dzierzek, Filament for a 3D Printer from Pet Bottles-Simple Machine, Int. J. Mech. Eng. Robot. Res. 9 (2020). https:// doi.org/10.18178/ijmerr.9.10.1386-1392.
- [12] A. Oussai, Z. Bártfai, L. Kátai, Development of 3d printing raw materials from plastic waste. A case study on recycled polyethylene terephthalate, Appl. Sci. 11 (2021). https://doi.org/10.3390/ app11167338.
- [13] N.E. Zander, M. Gillan, R.H. Lambeth, Recycled polyethylene terephthalate as a new FFF feedstock material, Addit. Manuf. 21 (2018). https://doi.org/10.1016/j.addma.2018.03.007.
- [14] C.K. Ror, S. Negi, V. Mishra, Development and characterization of sustainable 3D printing filaments using post-consumer recycled PET: processing and characterization, J. Polym. Res. 30 (2023). https://doi.org/10.1007/s10965-023-03742-2.
- [15] O. Bouzaglou, O. Golan, N. Lachman, Process Design and Parameters Interaction in Material Extrusion 3D Printing: A Review, Polymers (Basel). 15 (2023). https://doi.org/10.3390/ polym15102280.
- [16] J.D. Badia, E. Strömberg, S. Karlsson, A. Ribes-Greus, The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET), Polym. Degrad. Stab. 97 (2012) 98–107. https://doi.org/10.1016/j. polymdegradstab.2011.10.008.
- [17] E. Slezák, F. Ronkay, K. Bocz, Development of an Engineering Material with Increased Impact Strength and Heat Resistance from Recycled PET, J. Polym. Environ. (2023). https://doi.org/10.1007/ s10924-023-02945-4.
- [18] E. Slezák, F. Ronkay, D. Réz, K. Bocz, Recyclability of elastomer toughened recycled poly(ethylene terephthalate): The effect of grinding-extrusion-injection moulding on the mechanical and morphological properties of the blend, Heliyon 10 (2024). https:// doi.org/10.1016/j.heliyon.2024.e32096.
- [19] A. Oromiehie, A. Mamizadeh, Recycling PET beverage bottles and improving properties, Polym. Int. 53 (2004) 728–732. https://doi. org/10.1002/pi.1389.
- [20] B. Itim, M. Philip, Effect of multiple extrusions and influence of PP contamination on the thermal characteristics of bottle grade recycled PET, Polym. Degrad. Stab. 117 (2015) 84–89. https://doi. org/10.1016/j.polymdegradstab.2015.04.004.