A Vasipari Kutató Intézet 70 éves jubileuma (1952-2022) - III. rész

70th anniversary (1952-2022) of the Research Institute for Ferrous Metals – Part III.

Fehérvári Attila

1. Előszó

Az előző számban (második rész)¹ ismertetett törésmechanikai kutatások keretében egy módszert mutattam be a ridegtörés elkerülésére, amely a COD próbatestek és az ütőpróbatestek vizsgálati eredményeinek korrelációs kapcsolatára épült. Utaltam arra, hogy léteznek matematikai módszerek is, amelyek alkalmazásában és fejlesztésében a VASKUT Hegesztési Osztály munkatársai úttörő munkát végeztek. Így célszerű a fő lépések áttekintése.

2. Törésmechanika alapfogalmai

2.1 A repedés környezetének feszültségi állapota

A feszültségi állapot komponenseit Westergaard az Airyféle feszültségi függvényből vezette le tengelyszimmetrikus esetekre, amint azt Paul C. Paris és George C. Sih az ASTM 381 számú, különleges műszaki kiadványában (STP = Special Technical Publication)² publikálta.

Az a hosszúságú repedés csúcsának környezetében kialakuló feszültségmező egy tetszőlegesen kiválasztott r távolságú pontban:

A rugalmas feszültségmező komponensei:

$$\sigma_{ij} = K \frac{f_{ij}(\theta)}{\sqrt{2\pi r}} .$$
 (1)

Az arányossági (feszültségintenzitási) tényező függ a terheléstől:

$$K_{I} = \sigma \sqrt{\pi a} \quad , \tag{2}$$

$$K_{II} = \tau_{II} \sqrt{\pi a} \quad , \qquad \qquad (3)$$

$$K_{III} = \tau_{III} \sqrt{\pi a} \quad , \qquad (4)$$

ahol:

- σ a repedés síkjára merőleges feszültség,
- τ_{μ} a repedés síkjában ébredő nyírófeszültség,
- τ_{III} a repedés síkjában ébredő csavarófeszültség.

A feszültségintenzitási tényező a lineáris rugalmas feszültségek mérőszáma, az alkalmazásával foglalkozó tudományág a lineáris rugalmas törésmechanika (LEFM: linear elastic fracture mechanics).

A feszültségek hatására képlékeny alakváltozás lép fel a repedés élénél, amelynek határai (r_p) az 1. és a 2. ábrán láthatók.

A lineáris rugalmas törésmechanika alkalmazási határa: t $\ge 2,5 (K_{l_c}/R_p)^2$, amelyet a 3. ábrán tüntettem fel. Látható, hogy az általános gyakorlatban használt szerkezeti acélok esetén a rugalmas törésmechanika nem használható.

1. ábra: Képlékeny zóna a repedés élénél, ahol:

- K = K_i, σ_{ij} = redukált feszültség (az a) ábrán a Mohr, ill. a b) ábrán a Huber-Mieses-Hencky kritérium szerint számítva),
- σ_{ys} (vagy máshol R_ρ) az anyag folyási határa,
- σ₁, σ₂, σ₃ a főfeszültségek

ábra: Képlékeny zóna a repedés élénél, ahol:
K = K_{II} vagy K_{III}.

 σ_{ij} = redukált feszültség (Mohr, ill. a HMH kritérium szerint számítva)

3. ábra: A rugalmas törésmechanika alkalmazási határai

2.2 A nem lineárisan rugalmas törésmechanika

Rice 1968-ban bevezette az útfüggetlen J-integrál fogalmát, amely törési paraméterként használható.

A J-integrál értelmezése:

Egy repedés csúcsa körüli kontúr ds hosszúságú elemei a terhelésből származó, és ds elemre ható F erő következtében ∆l mértékben elmozdulnak. Az F∆l munkának a teljes kontúrra történő integrálja független a kontúr helyzetétől.

¹ Fehérvári Attila: A Vasipari Kutató Intézet 70 éves-jubileuma (1952-2022) - II rész, Anyagvizsgálók Lapja, 2022/II. lapszám, 76-82. oldal

² Paul. C. Paris, George C. Sih: Stress analysis of cracks. ASTM 381 (Fracture Toughness Testing and its Applications), 1965, pp. 30-83.

 ábra: A rugalmas-képlékeny törésmechanika alkalmazási határai

Következésképpen a próbatestbe vezetett munka a képlékeny zóna kialakítására fordítódik.

A lineáris rugalmas törésmechanika alkalmazási határa: t \geq 2,5(J_c / σ_{flow}), amelyet a 4. ábrán tüntettem fel, ahol:

• t - a próbatest vastagsága,

• σ_{flow} – az ún. folyási feszültség a folyási hatás és szakítószilárdság átlaga, azaz $\sigma_{\text{flow}} = 0.5(R_{p} + R_{m})$.

A J-integrál segítségével leírható a stabil repedésterjedés (R-görbe), amelynek mérőszáma a tearing modulus (5. ábra).

3. A nukleáris ipar A/11 projektje

1981-ben a kormányzat elhatározta egy kutatási projekt megvalósítását "Az atomerőmű biztonságos üzemelését szolgáló K+F feladatok" címmel. A projekt megszervezésére és vezetésére Dr. Gyimesi Zoltánt, a KFKI Atomenergia Kutató Intézet igazgatóját kérték fel.

Az AEKI javaslatot kért több intézménytől a projekt keretében kidolgozandó szakmai területekre. A VASKUT benyújtotta javaslatát a "Szilárdsági ellenőrzések és ismétlődő vizsgálatok a berendezések állapotának és becsült élettartamának meghatározására" címmel, amelyet az AEKI elfogadott (A/11-4. számmal). A VASKUT a szakmai terület előterjesztőjét, Dr. Rittinger Jánost bízta meg a kutatások vezetésével (VASKUT nyilvántartási száma: 8-2-1632/81-85). A téma kidolgozása volt a VASKUT legjelentősebb hozzájárulása a magyar hegesztési kultúra fejlődéséhez (mind pénzügyileg, mind hatásában). A szakmai terület művelése négy altéma keretében folyt. Voltak olyan altémák, amelyeket más osztályok műveltek, de olyan résztématerületek is, amelyek különböző okok miatt törlésre kerültek. Ezek nem szerepelnek jelen rövid áttekintésben.

4.1. A primerköri nyomástartó rendszer szerkezeti anyagában bekövetkező termikus öregedés és kisciklusú fáradás modellezett vizsgálata, valamint a repedéskeletkezés helyének meghatározása.

- 4.1.1. 15H2MFA acél, SZV10HMFT-AN42 hegesztőanyagokkal készített kötés, valamint plattírozott réteg előállítása, alaptulajdonságok meghatározása. Kidolgozta: Dr. Rittinger János.
- 4.1.3. Próbatest kiválasztása kisciklusú fárasztó vizsgálatokhoz. Kidolgozta: Kuty Ákos (Anyagvizsgálati Osztály).
- 4.1.4. 15H2MFA reaktortartály acél fedettívű hegesztéssel készült kötéseinek tulajdonsága. Kidolgozta: Dr. Rittinger János.
- 4.1.5. Plattírozott réteg szívósságát befolyásoló tényezők hatásának elemzése. Kidolgozta: Fogarassy László.

- 4.1.9. Hegesztési hőfolyamat hatása 15H2MFA jelű acél tulajdonságaira. Kidolgozta: Dr. Rittinger János.
- 4.1.10. Javítási technológia kidolgozása.
- 4.1.12. Adatgyűjtés BME és NME bevonásával
- 4.1.13. Összefoglaló jelentés. Kidolgozta: Dr. Rittinger János.
- 4.3. Repedések stabilitásának vizsgálata a primerköri nyomástartó rendszerek anyagaiban. Adatbank létrehozása a rendszer megbízhatóságának becslése érdekében
 - 4.3.4. 15H2MFA acél dinamikus törésmechanikai referencia görbéjének meghatározása a törési valószínűség megadásával. Kidolgozta Dr. Rittinger János Fehérvári Attila részvételével.
 - 4.3.6. Adatlap véglegesítése törésmechanikai vizsgálati eredmények tárolásához és feldolgozásához. Kidolgozta Dr. Rittinger János Fehérvári Attila részvételével.
 - 4.3.8. A fő keringtető vezeték hegesztett kötések tulajdonságainak meghatározása. I. rész és 2. rész. Kidolgozta Dr. RittingerJános.
 - 4.3.11. Törésmechanikai és kisciklusú kifáradási vizsgálatok eredményei 300 °C hőmérsékletig. Ia. kötet. Kidolgozta Dr. Rittinger János.
 - 4.3.12. 15H2MFA jelű acél és hegesztett kötésének statikus referencia görbéje. Kidolgozta Dr. Rittinger János.
- 4.4. Akusztikus emissziós vizsgálatok nyomástartó szerkezetekben lévő hibák azonosítására és lokalizálására, a primerköri nyomástartó rendszer vizsgálatának megbízható értékelése céljából. Az altémát a VASKUT Hegesztési Osztálya és a KFKI Atomenergia Kutató Intézet Mérésautomatizálási Osztálya közösen dolgozta ki. A Kutatás vezetője a VASKUT részéről Fehérvári Attila, a KFKI részéről Péter Attila volt.
 - 4.4.1-3. Négycsatomás akusztikus emissziós berendezés kifejlesztése, és alapvizsgálatok elvégzése különböző tartályszerkezeteken.
 - 4.4.4. AE vizsgálatok törésmechanikai próbatesten a repedés csúcsánál fellépő képlékeny alakváltozás által emittált jelek analízise és a stabil repedésterjedés érzékelése céljából (VASKUT jelentés: 1982. február).
 - 4.4.5. Tartályszerkezeteken végzett AE vizsgálatok eredményeinek kiértékelése, interpretálása és további "in situ" vizsgálati program kidolgozása (VASKUT jelentés: 1983. október).
 - 4.4.6. Stabil repedésterjedés érzékelésére vonatkozó laboratóriumi vizsgálatok folytatása a 4.4.4. feladat keretében, 1981-ben kidolgozott program szerint (VASKUT jelentés: 1984. február).
 - 4.4.7. Instrumentális bázis kiépítése sokcsatornás akusztikus emissziós vizsgálatok előkészítésére.
 - 4.4.8. Különböző típusú tartályszerkezetek globális AE és törésmechanikai vizsgálata. A vizsgálatoknál először kerül alkalmazásra a KFKI által kifejlesztett, sokcsatornás számítógépes AE hiba-lokalizáló és analizáló berendezés (VASKUT KFKI közös jelentés: 1985. december).
 - 4.4.9. Nukleáris erőművi szerkezetek anyagainak AE és törésmechanikai vizsgálata. A vizsgálatoknál először kerül sor az AE jelek különböző

jellemzőinek számítógépes feldolgozására (VASKUT jelentés: 1984.

- február). 4.4.10. Nukleáris szerkezeti anyagok akusztikus emissziós aktivitása.
- 4.4.11. Atomerőművek üzemeltetés alatti akusztikus emissziós vizsgálatának helyzete, felmérő tanulmány (KFKI).
- 4.4.12. Tartályszerkezetek akusztikus emissziós vizsgálata, második jelentés. Modelltartály vizsgálata nagy hibával, lassú terheléssel (VASKUT KFKI közös jelentés).
- 4.4.13. Akusztikus emissziós eszközfejlesztés és vizsgálati eredmények atomerőművi alkalmazásra. Összefoglaló jelentés (VASKUT jelentés: 1985. december).

3.1 Szemelvények az A/11 projekt megvalósítására végzett kutatások eredményéből

3.1.1 A reaktortartály anyagának törésmechanikai jellemzői

<u>Dinamikus</u> törésmechanikai anyagjellemzőket fárasztással berepesztett próbatestek ütvehajlító vizsgálatával határoztuk meg. A 6. ábra a törési szívósság (K_{Id}) mérési eredményeit tünteti fel a vizsgálati hőmérséklet és a 66,7 J energiaszinthez tartozó átmeneti hőmérséklet különbségének függvényében. A mérési eredmények alsó burkológörbéje használható a reaktortartályban észlelt, vagy posztulált hibák veszélyességének értékeléséhez a neutronsugárzás hatása előtt.

6. ábra: A törési szívósság dinamikus terhelésnél

7. ábra: Az ütővizsgálattal mért, és a repedésterjedésnél regisztrált törési szívósság összehasonlítása

A 7. ábra a törési szívósság (K_{id}) változását mutatja a vizsgálati sebesség függvényében, összehasonlítva a törés folyamatában mért törési szívóssággal. Látható, hogy a vizsgálatainkkal meghatározott anyagjellemző mértékadó a repedés megállítása szempontjából, amire a K_{la} megnevezéssel utaltunk a 6. ábrán.

A neutronsugárzás csökkenti a reaktortartály anyagának

szívósságát. A szívósság-csökkenés mérésére a PAV egy kapszulákból álló fűzért helyezett el a tartály fala mellett, amelybe próbatesteket helyezett el. A fűzért, és a benne elhelyezett próbatesteket a VASKUT gyártotta. A próbatestek vizsgálatát a PAV Anyagvizsgáló Laboratóriuma végezte. Az eredmények étékelésére egy Szakértői Testület alakult Dr. Trampus Péter vezetésével. A VASKUT képviseletében Dr. Rittinger János volt a Szakértői Testület tagja.

<u>Statikus</u> terhelés mellett a reaktortartály teljes (180 mm) falvastagságát megközelítő, 6 CT próbatesttel is meghatároztuk a reaktortartály anyagának törésmechanikai anyagjellemzőit. A vizsgálatokra a SKODA Művek laboratóriumában, MTS 250 tonnás szakítógépen került sor, mivel Magyarországon nem állt rendelkezésre a próbatestek töréséhez szükséges terhelőerőt biztosító szakítógép.

Az abszcisszán feltüntetett Δa_{max} repedésterjedést a vizsgálat után eltört próbatestek töretfelületének planimetrálásával határoztuk meg (példát mutat a 9. ábra).

 ábra: A reaktortartály anyagának 6 CT próbatesttel, statikus terheléssel meghatározott R-görbéje. Megjegyzés:

- R6, R7 és R8 anyagcsoportra utaló jelzés
- I. TERH, II TERH és III TERH a stabil repedésnövekedést előidéző terhelés nagyságára utal (a fenti jelölések néhány további ábrán is fellelhetők)

9. ábra: 6 CT próbatestek töretfelülete, amelyen jól láthatók az I. TERH, a II. TERH és III. TERH szintekkel létrehozott stabil repedésnövekedések

A statikus vizsgálat eredménye a 8. ábrán látható R-görbe. Anyagjellemző a statikus repedésterjedés mérőszáma, az 5. ábrán definiált "tépődési modulus": T = 96.

3.1.2 Feszültségek, alakváltozások és elmozdulások mérése tartályokba preparált, síkbeli hibák környezetében

A törésmechanika alkalmazásának elősegítésére vizsgálatokat végeztünk különböző méretű és anyagú tartályokon:

10. ábra: Hibák, nyúlásmérő bélyegek és elmozdulás-mérők 18 m³ térfogatú lágyacél tartályban

- 18 m³ térfogatú, hengeres, lágyacél gáztároló tartályon, átmérő: 1500 mm, falvastagság: t=19 mm;
- 100 m³ térfogatú, St 52.3 anyagú, cseppfolyós PB tároló tartályon, átmérő: d = 5760 mm, falvastagság: t=22 mm;
- 25 m³ térfogatú, hengeres, BHW 38 anyagú hőerőművi kazándobon, d = 1800 mm, t=85 mm;
- 22 m³ térfogatú, 15H2MFA anyagú, atomerőművi modelltartályon, d = 1800 mm, t=85 mm, plattírozott.

A lágyacél tartály preparálását és jeladóit a 10. ábrán tüntettük fel. A 100 m³-es gömbtartályba 13 mm mély műhibákat helyeztünk el az alapanyagba (a varratokkal párhuzamosan), és a hegesztett kötésbe (a varratokra merőlegesen). A 25 m³-es kazándobba 11 műhibát köszörültünk, amelyek bemutatásához szükséges ábrák száma meghaladja a cikk lehetőségeit. A modelltartályba egy műhiba került, amelynek jellemzői a 11. ábrán láthatók.

A vizsgálatokhoz összesen kb. ezer nyúlásmérő bélyeggel, kb. 100 elmozdulásmérőt használtunk. A méréseket többszöri fel- és leterheléssel végeztük. Valamennyi vizsgálatnál regisztrálták az akusztikus emissziós jeleket is.

A terhelés változásával folyamatosan változik a repedéskinyílás elfordulási középpontja. Példaként a modelltartályban lévő műhiba (11. ábra) elfordulási középpontjának változását mutatja a 12. ábra az első terhelésnél (a második felterhelésnél az elfordulási középpont hasonlóan változik).

12. ábra: Elfordulási középpont változása a modelltartály műhibájának első terhelésénél

11. ábra: Hibák, nyúlásmérő bélyegek és elmozdulás-mérők atomerőművi modelltartályban

3.1.3 Akusztikus emissziós vizsgálatok

A vizsgálatokat a KFKI AEKI Mérésautomatizálási Osztály és a VASKUT Hegesztési Osztály közösen végezte. A KFKI feladata az eszköz- és a méréstechnika fejlesztése, a VASKUT feladata az eredmények interpretálása volt az akusztikus emissziós méréssel instrumentált próbatestek és tartályok vizsgálati eredményei alapján. A kutatásokat a KFKI részéről Péter Attila vezette, részt vett benne Dr. Pelionisz Péter, Geréb János, Lafrankó Gábor, Lipták András, Kőmíves Ákos, Paár Ferenc. A VASKUT részéről Fehérvári Attila vezetésével Dr. Rittinger János, Dr. Tóth Károly, Udvardi Tibor, Schwarczenberger Pál, Szántó László és Kovácsi István dolgozott a kutatásban.

A vizsgálatokat 500 kHz saját frekvenciájú, Dunegan Endevco detektorokkal, a KFKI által folyamatosan fejlesztett jelfeldolgozó eszközökkel végeztük.

A 13. ábra a 6 CT próbatestek (R-görbét lásd a 8. ábrán) akusztikus emissziójának jellemzőit (ΣE és ΣO) mutatja két egymást követő terhelésnél. Az ábra alapján levonható fontosabb következtetések:

- a rugalmas alakváltozás (σ < R_p) nem emittál akusztikus jeleket,
- a maradó alakváltozás kezdetén megindul, és az alakváltozással folyamatosan nő az emisszió (bal oldali ábra),
- a második terhelésnél nincs emisszió, amíg az alakváltozás el nem éri az első terhelésnél fellépő alakváltozást: Kaiser effektus (jobboldali ábra).

13. ábra: A 6 CT próbatestek akusztikus emissziója a repedés kinyílás függvényében

14. ábra: Az AE jelek egyik paraméterének kapcsolata a repedésterjedéssel

A 14. ábra összefoglalja a 6 CT próbatestek AE vizsgálatánál mért oszcilláció (Σ O) és a stabil repedésterjedés (Δa_{max}) összefüggését, amelynek meredeksége az anyagtól és a próbatesttől függ.

Az akusztikus emissziós vizsgálatok eredményeinek széleskörű hazai és nemzetközi publicitása volt (lásd: Fehérvári Attila Ifjan-Éretten-Öregen, 2021. 7.1. melléklet³)

A projekt egyik hasznos "mellékterméke" egy repedés-terjedés érzékelésére alkalmas mérőeszköz volt (KFKI gyártmány), amelynek működése örvényáramos potenciál-mérésen alapult. A készülék lehetővé tette, hogy olyan helyen is végezhessünk repedésterjedés mérést, ahol a hely-, a hőmérséklet-, és/vagy a közeg miatt arra más módon nem volna lehetőség. A 15. ábra potenciálméréssel (Δa_{pot}) és közvetlen méréssel (Δa_{opt}) a VASKUT által végzett vizsgálat eredményét hasonlítja össze.

15. ábra: A potenciálméréssel és optikai úton meghatározott repedésterjedés

A/11-4 téma tudományos és szakmai jelentősége, továbbá a VASKUT költségeihez történő jelentős hozzájárulása miatt Dr. Rittinger Jánost nevezték ki vezetőnek a Hegesztési Osztály élére, amire már régen – az Acélmetallurgiai Osztály Hegesztési Csoportjának eredményes, és országos jelentőségű tevékenységének vezetésével is – rászolgált.

4. Hegesztési Osztály tevékenysége: 1985-1986

Osztályvezető: Dr. Rittinger János

Az A/11-4 téma eredményeinek széleskörű hasznosulása végett a VASKUT leányvállalata, a szellemi termékek hasznosítására létrehozott FERINOV megbízta Fehérvári Attilát, Dr. Fusch Eriket és Dr. Rittinger Jánost egy kiadvány kidolgozásával. A kiadvány címe: A törésmechanika alkalmazása hegesztett szerkezetek megbízhatóságának és az acélfelhasználás gazdaságosságának növelése céljából⁴. A kiadványt az Országos Találmányi Hivatal védelem alá helyezte (1985). A kiadvány három kötetből és három mellékletből állt:

1.kötet: Alapfogalmak

2.kötet: Előírások

3.kötet: Vizsgálatok

1.melléklet: K-atlasz

2.melléklet: Anyagjellemzők jegyzéke

3.melléklet: Készülékek gyártási dokumentációja (3 CT, TPB)

A kiadvány tartalmazott empirikus összefüggéseket a képlékeny alakváltozás leírására:

1. R-görbék

$$\frac{K_{c}}{K_{lc}} = f\left(\frac{\sigma_{c}}{\sigma_{flow}}\right), \tag{5}$$

2. Tervezési-görbék

$$\frac{\delta_{c}}{\epsilon_{Y}} = f\left(\frac{\sigma_{c}}{R_{p}}\right). \tag{6}$$

Törésmechanikai anyagjellemzők összefüggése síkbeli alakváltozási állapotban.

$$J_{lc} = \frac{1 - v^2}{E} K_{lc}^2,$$
 (7)

$$\delta_{ce} = \frac{J_{lc}}{2R_{p}} = \frac{1 - v^{2}}{2} \varepsilon_{Y} \left(\frac{K_{lc}}{R_{p}}\right)^{2}, \qquad (8)$$

A VASKUT-FERINOV kiadvány folyamatos aktualizálása végett Fehérvári Attila, Dr. Rittinger János közzétett egy VASKUT kiadványt, amelynek címe: Anyagjellemzők gyűjteménye⁵. A gyűjteményt Fehérvári Attila tovább gyarapította a WELMAT eladásáig.

Dr. Rittinger János osztályán folytatódott a VASKUT vezető tudományos intézményi tevékenysége Dr. Szunyogh László vezetésével.

1986-ban Dr. Rittinger Jánost felkérték az ERŐKAR Anyagvizsgálati Labor vezetésére, amelyet elfogadott. Személyes barátságunk fennmaradt, az ipari megbízásokért folyó versengésben viszont ellenfelek lettünk.

³ Fehérvári Attila Ifjan - Éretten - Öregen, 80 kérdés-válasz, több, mint nyolc évtizedről, Beszélgetőtárs: Tóth László, 2021

⁴ Fehérvári Attila, Fuchs Erik, Rittinger János: A törésmechanika alkalmazása hegesztett szerkezetek megbízhatóságának és az acélfelhasználás gazdaságosságának fokozása céljából, VASKUT-FERINOV, 1975

⁵ Fehérvári Attia, Rittinger János: Anyagjellemzők gyűjteménye, VASKUT, 1985.